Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124.861
Filtrar
1.
Sci Rep ; 14(1): 7690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565870

RESUMO

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Assuntos
Ciona intestinalis , Animais , Humanos , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Células HEK293 , Transdução de Sinais , Vertebrados/metabolismo , Proteínas de Transporte/metabolismo
2.
Biol Pharm Bull ; 47(4): 764-770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569835

RESUMO

L-Lactate transport via monocarboxylate transporters (MCTs) in the central nervous system, represented by the astrocyte-neuron lactate shuttle (ANLS), is crucial for the maintenance of brain functions, including memory formation. Previously, we have reported that MCT1 contributes to L-lactate transport in normal human astrocytes. Therefore, in this study, we aimed to identify transporters that contribute to L-lactate transport in human neurons. SH-SY5Y cells, which are used as a model for human neurons, were differentiated using all-trans-retinoic acid. L-Lactate uptake was measured using radiolabeled L-lactate, and the expression of MCT proteins was confirmed Western blotting. L-Lactate transport was pH-dependent and saturated at high concentrations. Kinetic analysis suggested that L-lactate uptake was biphasic. Furthermore, MCT1, 2 selective inhibitors inhibited L-lactate transport. In addition, the expression of MCT1 and 2 proteins, but not MCT4, was confirmed. In this study, we demonstrated that MCT1 and 2 are major contributors to L-lactate transport in differentiated human neuroblastoma SH-SY5Y cells from the viewpoint of kinetic analysis. These results lead to a better understanding of ANLS in humans, and further exploration of the factors that can promote MCT1 and 2 functions is required.


Assuntos
Neuroblastoma , Simportadores , Humanos , Cinética , Transporte Biológico , Proteínas de Transporte/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo
3.
Methods Mol Biol ; 2797: 47-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570452

RESUMO

RAS proteins play a vital role in regulating downstream signaling and essential cellular processes, positioning them as key players in normal cellular physiology and disease development. Among the various isoforms of RAS, KRAS stands out as one of the most frequently mutated genes in human cancer. The prevalence of RAS mutations in cancer often involves single amino acid substitutions at codons 12, 13, or 61. These mutations disrupt the RAS protein's inherent ability to transition between its active and inactive states, resulting in a constant activation signal and driving uncontrolled cell growth. Crystallization and structural analysis of KRAS with inhibitors and RAS-binding proteins play a pivotal role in unraveling the structural and mechanistic details of KRAS function, aiding in drug discovery efforts, and advancing our understanding of KRAS-driven diseases. Here, we present our experimental methodology for crystallizing KRAS in the presence of covalent or non-covalent small molecules and proteins acting as effectors or regulators of RAS. We detail the techniques for successful crystallization and the subsequent optimization of crystallization conditions. The resulting crystals and their structures will provide valuable insights into the key interactions between KRAS and its partner proteins or potential inhibitors, offering a foundation for developing targeted therapies that are more potent and selective against KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Transporte/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais , Neoplasias/genética , Mutação
4.
Blood ; 143(14): 1323-1324, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573606
5.
Mol Biol Rep ; 51(1): 495, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587571

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most prevalent cancers that contribute to mortality among women worldwide. Despite contradictory findings, considerable evidence suggests that single nucleotide polymorphisms (SNPs) in the FSCN1 and HOTAIR genes may have a causative impact on the development of BC. This case-control study was conducted to evaluate the association of genotype frequency in FSCN1 rs852479, rs1640233, and HOTAIR rs920778 with susceptibility and prognosis of BC, as well as the impact of clinical stages and hormonal features. METHODS AND RESULTS: FSCN1 (rs852479, rs1640233) and HOTAIR (rs920778) were genotyped using TaqMan real-time PCR assay in 200 BC patients and 200 cancer-free controls, all representing Egyptian women. Genotypic analyses in association with clinicopathological factors and disease risk were assessed. As a result, a significant association with BC risk was observed for CC genotype frequency of FSCN1 rs852479 A > C (OR = 0.395, 95% CI 0.204-0.76, p-value = 0.005). However, no significant correlation was detected between the FSCN1 rs1640233 C > T and HOTAIR rs920778 C > T polymorphic variants and susceptibility to BC. Interestingly, CC genotype of FSCN1 rs1640233 was more likely to progress tumor size and lymph node invasion in BC cases (p-value = 0.04 and 0.02, respectively). Moreover, it was revealed that there was a non-significant correlation between the haplotype distributions of FSCN1 rs852479 and rs1640233 and the probability of BC. CONCLUSIONS: Based on the sample size and genetic characteristics of the subjects involved in the present study, our findings indicated that FSCN1 rs852479 may contribute to BC susceptibility in a sample of the Egyptian population.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Proteínas de Transporte , Estudos de Casos e Controles , Egito , Genótipo , Proteínas dos Microfilamentos , Polimorfismo de Nucleotídeo Único/genética
6.
ACS Infect Dis ; 10(4): 1414-1428, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38556987

RESUMO

PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.


Assuntos
Leishmania major , Leishmaniose , Parasitos , Animais , Leishmania major/metabolismo , Proteína Beclina-1/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/metabolismo , Parasitos/metabolismo , Mamíferos/metabolismo
7.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558238

RESUMO

Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosforilação , Transporte Proteico , Rede trans-Golgi/metabolismo , Proteínas de Transporte/metabolismo
8.
Biochemistry (Mosc) ; 89(Suppl 1): S112-S126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621747

RESUMO

The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.


Assuntos
Peróxido de Hidrogênio , Radical Hidroxila , Radical Hidroxila/química , Ferro/química , Hidróxidos , Oxirredução , Proteínas de Transporte
9.
Physiol Behav ; 279: 114543, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565330

RESUMO

BACKGROUND: Insufficient sleep adversely affects energy homeostasis by decreasing leptin levels. The underlying physiological mechanisms; however, remain unclear. Circulating leptin is well described to be regulated by its soluble receptor (sOB-R). Intriguingly, the impact of short sleep duration on sOB-R levels has never been characterized. AIM: In this study, we investigated, for the first time, the variation of sOB-R levels and its temporal relationship with circulating leptin upon acute sleep restriction. METHODS: Five adult females were maintained on an 8-hour sleep schedule (bedtime at 00:00) for 1 week before restricting their sleep to 4.5 h (bedtime at 03:30) on 2 consecutive nights. Balanced meals were scheduled to specific hours and sleep was objectively measured. Four-hour blood samples were regularly collected during waking hours between 08:00 and 00:00. RESULTS: Sleep restriction resulted in lower leptin (20.9 ± 1.7 vs 25.7 ± 1.7 ng/ml) and higher sOB-R concentrations (24.4 ± 1.2 vs 19.8 ± 1.6 ng/ml). Neither the discordant temporal relationship nor the pattern of leptin and sOB-R were altered in response to sleep restriction. CONCLUSION: Our results suggest that sleep restriction may modulate circulating leptin levels and possibly metabolism via upregulating its soluble receptor. This observation may have valuable therapeutic implications when considering sOB-R as a potential target during the management of metabolic disturbances.


Assuntos
Leptina , Receptores para Leptina , Humanos , Feminino , Projetos Piloto , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte , Sono
10.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570189

RESUMO

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Assuntos
Amaurose Congênita de Leber , Retinite Pigmentosa , Animais , Humanos , Peixe-Zebra/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte/metabolismo
11.
HLA ; 103(4): e15457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575368

RESUMO

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


Assuntos
DNA , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Regiões 3' não Traduzidas , Alelos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Éxons/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo
12.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581012

RESUMO

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Assuntos
Adenilil Ciclases , GTP Fosfo-Hidrolases , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Transporte , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612694

RESUMO

KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding protein with multiple functions. It is known to bind AU-rich motifs within the 3'-untranslated region of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In the present study, we investigated the role of KSRP for the immunophenotype of macrophages using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP-/- mice. RNA sequencing revealed that KSRP-/- BMDM displayed significantly higher mRNA expression levels of genes involved in inflammatory and immune responses, particularly type I interferon responses, following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ (IFN-γ), interleukin (IL)-1ß and IL-6 mRNA in KSRP-/- macrophages after 6 h subsequent to LPS stimulation as compared to WT cultures. At the protein level, KSRP-/- BMDM displayed higher levels of these cytokines after overnight stimulation. Matching results were observed for primary peritoneal macrophages of KSRP-/- mice. These showed higher IL-6, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher cytokine production upon LPS administration in comparison to WT mice. Taken together, these findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression in macrophages.


Assuntos
Proteínas de Transporte , Interleucina-6 , Animais , Camundongos , Interleucina-6/genética , Lipopolissacarídeos , Macrófagos , Citocinas , Regiões 3' não Traduzidas
14.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613016

RESUMO

Dietary soy protein and soy isoflavones have anti-inflammatory properties. Previously, we reported that feeding soy protein concentrate diet (SPC) with low or high isoflavone (LIF or HIF) to young (seven-week-old) obese (fa/fa) Zucker rats inhibits lipopolysaccharide (LPS) translocation and decreases liver inflammation compared to a casein control (CAS) diet. The current study investigated whether SPC-LIF and SPC-HIF diets would reduce liver inflammation in adult obese Zucker rats fed a CAS diet. A total of 21 six-week-old male obese (fa/fa) Zucker rats were given CAS diet for 8 weeks to develop obesity then randomly assigned to CAS, SPC-LIF, or SPC-HIF (seven rats/group) diet for an additional 10 weeks. The expression of LPS-translocation, inflammation, and intestinal permeability markers were quantified by qPCR in liver, visceral adipose tissue (VAT), and colon. LPS concentration was determined in both the colon content and fecal samples by a Limulus amebocyte lysate (LAL) test. SPC-LIF and SPC-HIF diets significantly decreased liver LPS-binding protein (LBP) expression compared to CAS diet (p < 0.01 and p < 0.05, respectively). SPC-HIF diet also significantly decreased liver MCP-1 and TNF-α expression (p < 0.05) and had a trend to decrease liver iNOS expression (p = 0.06). In the colon, SPC-HIF diet significantly increased LBP expression compared to CAS diet (p < 0.05). When samples from all three groups were combined, there was a negative correlation between colon LBP expression and liver LBP expression (p = 0.046). SPC diets did not alter the expression of intestinal permeability markers (i.e., occludin, claudin 3, and zonula occludens-1) in the colon or inflammation markers (i.e., TNF-α and iNOS) in VAT or the colon. LPS levels in the colon content did not differ between any groups. Fecal LPS levels were significantly higher in the SPC-LIF and SPC-HIF groups compared to the CAS group (p < 0.01). In conclusion, SPC, particularly SPC with HIF, reduces liver LBP expression and inflammation makers (i.e., TNF-α and MCP-1 expression) in adult obese Zucker rats, likely by reducing LPS translocation.


Assuntos
Proteínas de Fase Aguda , Proteínas de Transporte , Hepatite , Lipopolissacarídeos , Glicoproteínas de Membrana , Masculino , Animais , Ratos , Ratos Zucker , Proteínas de Soja/farmacologia , Fator de Necrose Tumoral alfa , Obesidade , Inflamação , Dieta Redutora , Colo
15.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615060

RESUMO

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Assuntos
Proteínas de Fase Aguda , Gotículas Lipídicas , Glicoproteínas de Membrana , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Triglicerídeos
16.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Fibronectinas , Autofagia , Colágeno Tipo I , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas , Fibrose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética
17.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600569

RESUMO

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Assuntos
Proteínas dos Microfilamentos , Microglia , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas de Transporte , Gliose/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
18.
Front Cell Infect Microbiol ; 14: 1268243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606299

RESUMO

Introduction: Crohn's disease (CD) is a chronic inflammatory bowel disease, of which the etiology involves genetic, environmental and microbial factors. Adherent-invasive Escherichia coli (AIEC) and polymorphisms in autophagy-related genes have been implicated in CD etiology. Autophagy is a key process for the maintenance of cellular homeostasis, which allows the degradation of damaged cytoplasmic components and pathogens via lysosome. We have shown that a functional autophagy is necessary for AIEC clearance. Here, we aimed at identifying the autophagy receptor(s) responsible to target AIEC to autophagy for degradation. Methods: The levels of autophagy receptors p62, NDP52, NBR1, TAX1BP1 and Optineurin were knocked down in human intestinal epithelial cells T84 using siRNAs. The NDP52 knock-out (KO) and p62 KO HeLa cells, as well as NDP52 KO HeLa cells expressing the wild-type NDP52 or the mutated NDP52Val248Ala protein were used. Results and discussion: We showed that, among the tested autophagy receptors (p62, NDP52, NBR1, TAX1BP1 and Optineurin), diminished expression of p62 or NDP52 increased the number of the clinical AIEC LF82 strain inside epithelial cells. This was associated with increased pro-inflammatory cytokine production. Moreover, p62 or NDP52 directly colocalized with AIEC LF82 and LC3, an autophagy marker. As the NDP52Val248Ala polymorphism has been associated with increased CD susceptibility, we investigated its impact on AIEC control. However, in HeLa cell and under our experimental condition, no effect of this polymorphism neither on AIEC LF82 intracellular number nor on pro-inflammatory cytokine production was observed. Together, our results suggest that p62 and NDP52 act as autophagy receptors for AIEC recognition, controlling AIEC intracellular replication and inflammation.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Células HeLa , Mucosa Intestinal/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Autofagia/fisiologia , Citocinas/metabolismo , Aderência Bacteriana
19.
J Phys Chem B ; 128(15): 3631-3642, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38578072

RESUMO

Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Conformação Proteica , Software , Domínios Proteicos
20.
Neurosci Lett ; 828: 137766, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583505

RESUMO

INTRODUCTION: The neuroimmune system performs a wide range of functions in the brain and the central nervous system. The microglial translocator protein (TSPO) has an established role as a cell marker in identification of the neuroimmune system. Previously, human studies have shown TSPO differences in neuropsychiatric disorders. Seasonal variability has also been demonstrated in multiple systems of healthy individuals. Therefore, in this study, we attempt to understand whether seasonal changes affect brain TSPO levels using [11C]PBR28 positron emission tomography (PET) imaging. METHODS: 46 healthy subjects (mean age ± SD = 32.5 ± 10); sex (M/F) = 32/14)) underwent PET imaging with [11C]PBR28 in a retrospectively conducted analysis. All PET scans were performed on the HRRT scanner. Volume of distribution (VT) values were generated for cortical and subcortical regions and the cerebellum. Spring/summer months were defined as March to August while fall/winter months were defined as September to February and were compared through 2-tailed t-tests (SciPy library v.1.10.1 and Pinguoin library on Python v.3.8.8). Average daylight hours and temperature in New Haven, CT were obtained online (www.wunderground.com) and compared to VT with Spearman's correlations. RESULTS: There were no significant differences observed between the TSPO levels of spring/summer and fall/winter months in the brain (t = 0.52, p = 0.61). Additional analysis on all individual brain regions also indicated non-significance. Likewise, no significant correlations were found between TSPO levels in the whole brain and brain regions against daylight hours (ρ= 0.05, p = 0.74), temperature (ρ = 0.04, p = 0.81), or month (ρ = 0.08, p = 0.60). Controlling TSPO gene polymorphisms and other variables had no significant effect on the outcome. CONCLUSION: To the best of our knowledge, this is the first human study to investigate seasonal changes in TSPO expression. Our results can be interpreted as the lack of seasonal variability in the neuroimmune system, but important limitations include high interindividual variability, test-retest variability, specificity of the tracer, and a limited sample size. Limitations notwithstanding, our results conclude that TSPO levels in the brain are not impacted by light and temperature changes in different seasons.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Estações do Ano , Estudos Retrospectivos , Receptores de GABA/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...